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Abstract Error bars around observables of quantum mechanical systems are
extremely lacking; in most cases only an upper bound to the energy is practical.
We present a new lower bound to the expectation value of an operator that is most
similar to the lower bound of Weinhold. While Weinhold’s bound has flexibility by
incorporating expectation values (some of which may not exist) of different moments
of the operator to be bounded, the flexibility of our lower bound relies on the form
of a similar, but bounded, operator. Like Weinhold’s bound, ours is limited to non-
negative operators and the ground-state of the system. Our lower bound is shown to
have properties which allow it to converge to the true expectation value of the ground
state, but a practical application to the Helium atom shows that Weinhold’s bound is
superior in this case.

Keywords Lower bound · Expectation value · Helium

1 Introduction

We assume a quantum system characterized by eigenvalues En and normalized eigen-
functions ψn determined from the time-independent Schrödinger equation Hψn =
Enψn where H is the Hamiltonian operator. Since Schrödinger’s presentation nearly
a century ago, we have seen great progress in our ability to approximate these ener-
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gies and eigenfunctions. Nevertheless, aside from the variational theorem which gives
upper bounds to energies there is still a lack of systematic and practical methods to
bound system properties. Even lower bounds to the energies remain elusive for most
atomic and molecular systems. In this report we consider a new method to deter-
mine a lower bound to the ground-state expectation value 〈ψ1|Aψ1〉 of a non-negative
operator A.

Given a normalized trial function φ designed to approximate a normalized Hamil-
tonian eigenfunction ψn, we can approximate the value of a property 〈ψn|Aψn〉 of the
system by 〈φ|Aφ〉 for operator A. As the trial function improves in quality, as mea-
sured perhaps by the variational theorem, we expect our approximation of 〈ψn|Aψn〉
to improve. However, improvement is not guaranteed, and the amount of improvement
(if any) is difficult to determine. We need error bars, i.e. lower and upper bounds to
〈ψn|Aψn〉, to assess the quality of 〈φ|Aφ〉.

Mazziotti and Parr [1] introduced inequality (1) to bound expectation values based
on the variational theorem for energy. The other parameters appearing in the bounds
are defined by (H + c+ A)ψ+

n = E+
n ψ

+
n and (H − c− A)ψ−

n = E−
n ψ

−
n where c+ and

c− are optimizable positive parameters.

E+
1 − En

c+ ≤ 〈ψn|Aψn〉 ≤ En − E−
1

c− (1)

For both the upper and lower bounds of inequality (1), an upper bound to En is needed
(easily obtained from the variational theorem). On the other hand, lower bounds to
E−

1 and E+
1 are also needed. This requires generation of energy lower bounds for the

Hamiltonians H ± c± A which are likely more difficult to calculate than for the basic
Hamiltonian H . If energy lower bounds can be obtained for the original Hamiltonian,
H , (perhaps from the Temple formula [2] or Bazley’s special choice for intermediate
problems [3]) then it is likely that lower bounds to E+

1 can also be obtained. Unfor-
tunately, with a lessening of the energy from E1 to E−

1 , the methods suggested for
obtaining lower bounds are likely to fail for unbounded operators A. Thus the upper
bound of inequality (1) is likely impractical and for most cases only the lower bound
is attainable. If the Temple bound were used to acquire a lower bound to E+

1 or E−
1

then the expectation value of the square of (H ± c± A) would have to be computed,
which is typically a difficult task. Mazziotti and Parr’s method of calculating bounds is
especially notable because it is straightforward to apply to any of the system’s states;
this is not the case for other methods. However, one must note that the presence of E±

1 ,
rather than E±

n , suggests that the bounds will be good for only ground state properties.
Another approach was taken by Bazley and Fox [4], Jennings and Wilson Jr [5], and

Weinhold [6]. The basic idea is best expressed in inequality (2a) given by Weinhold
which used various moments of the non-negative operator A with a normalized trial
function φ.

〈ψn|Aψn〉 ≥
(

s 〈φ|Avφ〉 − (1 − s2)1/2
[〈
φ|A2vφ

〉 − 〈φ|Avφ〉2]1/2
)2

〈
φ|A2v−1φ

〉 (2a)
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Common choices are v = 1 (requiring 〈φ|Aφ〉 and 〈φ|A2φ〉) and v = 0 (requiring
〈φ|Aφ〉 and 〈φ|A−1φ〉). The term s is the overlap of trial function φ and true wave
functionψn. The need to bound |s| generally restricts one to a study ofψ1 (rather than
ψn) using the Eckart bound [7]. One problem with this approach is that some moments
of the operator may not exist. For example, in the case of atoms for A = 1/r2, the
expectation value 〈φ|A2φ〉 does not exist for realistic ground-state trial functions.
Recently Marmorino and Cassella [8] proposed a new approach for lower bounds to
expectation values that shares similarities with both methods given above. Practical
application of all these methods to unbounded operators is essentially limited to one-
sided bounds to ground-state (not excited state) expectation values of non-negative
operators.

2 Strategy

In this section we derive a straightforward method to calculate lower bounds to 〈ψ |Aψ〉
where ψ is the normalized ground-state Hamiltonian eigenfunction and A = a2 is
real non-negative operator. For simplicity we assume that both ψ and the normal-
ized trial function φ are real-valued. Because of the positive semi-definiteness of A
and the real-valued nature of A, ψ , and φ the following expressions are equivalent:
〈ψ |Aφ〉 = 〈aψ |aφ〉 = 〈Aψ |φ〉 = 〈φ|Aψ〉 = 〈aφ|aψ〉 = 〈Aφ|ψ〉. The basis of the
method is the Cauchy-Schwarz inequality (3).

〈φ|Aψ〉2 = 〈aφ|aψ〉2 ≤ 〈ψ |Aψ〉 〈φ|Aφ〉 (3)

The wave function ψ can be written as Eq. (4) in terms of the trial function and a
normalized residual, δ, with real-valued coefficients s and x . The residual is unknown.

ψ = sφ + xδ (4)

The left hand side of inequality (3) is equal to the square of equality (5) which is
derived from equating two different expressions for an expectation value of
A: 〈ψ − sφ|A(ψ − sφ)〉 = 〈xδ|A(xδ)〉.

〈φ|Aψ〉 = 〈ψ |Aψ〉 + s2 〈φ|Aφ〉 − x2 〈δ|Aδ〉
2s

(5)

Inserting Eq. (5) into inequality (3) yields the quadratic inequality (6) where, for
simplicity, we adopt the notation Aψ = 〈ψ |Aψ〉, 〈A〉 = 〈φ|Aφ〉, and Aδ = 〈δ|Aδ〉.

A2
ψ − 2Aψ

(
x2 Aδ + s2 〈A〉

)
+ s4 〈A〉2 + x4 A2

δ − 2x2s2 Aδ 〈A〉 ≤ 0 (6)

When this inequality is treated as a quadratic equation and roots are found, the roots
provide upper and lower bounds to 〈ψ |Aψ〉. These roots are given in Eq. (7).

Aψ(root) = s2 〈A〉 + x2 Aδ ± 2|x ||s| 〈A〉1/2 A1/2
δ (7)
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These bounds can be simplified in their dependence by noting that x2 + s2 = 1 so
that x2 = 1 − s2 to yield Eq. (8).

Aψ(root) = s2 〈A〉 + (1 − s2)Aδ ± 2|s|(1 − s2)1/2 〈A〉1/2 A1/2
δ (8)

Also note that a trivial (but likely tight) upper bound to s2 is unity and a trivial (but
likely poor) lower bound to Aδ is zero. Simplified roots are presented as upper and
lower bounds to Aψ in inequality (9).

s2 〈A〉 − 2(1 − s2)1/2 〈A〉1/2 A1/2
δ ≤ Aψ ≤ 〈A〉

+(1 − s2)Aδ + 2(1 − s2)1/2 〈A〉1/2 A1/2
δ (9)

If s2 is indeed close to unity then terms with powers of (1 − s2) will make little
contribution and we can expect tight bounds—provided that Aδ can be approximated
well. In each case an upper bound to Aδ and a lower bound to s2 are needed; the latter
is given by the Eckart bound, inequality (10).

s2 ≥ E2 − 〈φ|Hφ〉
E2 − E1

(10)

It is the Eckart bound that brings success and difficulty to our method. Without it
we would have no rigorous substitute for s2. The difficulty lies with the energies as
exact values for E2 and E1 are generally not available. Although lower bounds to these
will suffice, precise lower bounds are extremely difficult to achieve—and precision
for E1 is needed to get a tight lower bound to s2. All methods to determine lower
bounds to energies are difficult and usually not practical. The most common proce-
dure is the Temple formula [2] which requires the difficult integral 〈φ|H2φ〉. Despite
its drawbacks, the Eckart bound is the simplest option for s2. It lacks a generalization
to excited states that is as simple [9] and thus we are restricted to bounding properties
of the ground state.

3 Bounded operators

For the case of a bounded non-negative operator A, its maximum, Amax, can serve as
an upper bound to Aδ to yield inequality (11).

s2 〈A〉 − 2(1 − s2)1/2 〈A〉1/2 A1/2
max ≤ Aψ ≤ 〈A〉 + (1 − s2)Amax

+2(1 − s2)1/2 〈A〉1/2 A1/2
max (11)

For a multiplicative operator Amax is merely the supremum of the operator over
the coordinates of the space. For a more complicated operator, Amax is defined as
the supremem of 〈χ |Aχ〉 over all normalized χ in the domain of the operator. If the
operator A has a large variation in its expectation values, then either definition of Amax
suggests that it is likely to be a poor bound to Aδ . This will result in poor bounds to
Aψ unless s2 is remarkably close to one.
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It is instructive to compare our lower bound in inequality (11) with Weinhold’s
lower bound. For the case of v = 1, inequality (2a) expands to inequality (2b) where
the small positive term (1 − s2)(〈A2〉 − 〈A〉2)/〈A〉 has been dropped.

〈A〉ψ ≥ s2 〈A〉 − 2(1 − s2)1/2

√〈
A2

〉 − 〈A〉2

〈A〉 (2b)

Comparison of bounds (11) and (2b) shows that the main difference is whether the
square of the expectation value or the maximum of the operator is involved.

4 Unbounded operators

For an unbounded non-negative operator A, we cannot bound Aδ = 〈δ|Aδ〉 in inequal-
ity (9) by Amax because Amax = ∞. Initially this would seem to make both the upper
and lower bounds of inequalities (9) or (11) impractical; however, a lower bound is
still possible by considering an auxiliary bounded operator B such that B ≤ A. Lower
bound, L , to 〈ψ |Bψ〉 serves as a lower bound to 〈ψ |Aψ〉 in inequality (12).

Aψ ≥ Bψ ≥ L = s2 〈B〉 − 2(1 − s2)1/2 〈B〉1/2 B1/2
max (12)

Suppose A = x2, where x is one of the Cartesian coordinates. Then we can choose
a cutoff point b so that B = x2 when |x| < b and B = b2 for |x| > b. Operator B
is bounded by Bmax = b2, and furthermore can be varied through the choice of b to
provide optimal results in inequality (12). As b increases, B approaches A—which is
necessary for a good bound; but also as b increases a greater amount is being subtracted
in the lower bound to 〈ψ |Bψ〉 and 〈ψ |Aψ〉—this is disadvantageous. Another option
for B is x2exp(−b x2) where b can be varied as before, though it carries a different
meaning. In this case Bmax = 1/(2b) and as b decreases B approaches A, but Bmax
rises.

As φ → ψ , then L → Bψ ; call this condition (i). As B → A, then Bψ → Aψ; call
this condition (ii). Both conditions (i) and (ii) must be satisfied in order for L → Aψ .

5 Harmonic oscillator

For a simple illustration of our method we consider the harmonic oscillator potential
in one dimension. The Hamiltonian operator is given in Eq. (13) using the mass of an
electron and a force constant of k = 4 in atomic units.

H = −1

2

d2

dx2 + 1

2
kx2 (13)

We consider the observable A = x2 as an example. Because x2 is an unbounded
operator we can obtain only a lower bound to Aψ . This is done by introducing using the
bounded operator B = {x2 ∈ [−b, b], b2 /∈ [−b, b]} which is bounded by Bmax = b2.
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Fig. 1 Lower bounds L (solid curve) to Aψ (solid line) are plotted against the parameter b of bounded
operator B using the exact wave function (with exponential parameter a = 1) as the trial function

To bound s2 in inequality (12) using the Eckart bound, the exact values of E1 and E2
were used (in practical application, lower bounds to both energy levels would be used
instead). The normalized trial function φ = (2a/π)1/4exp(−ax2) was chosen so we
could illustrate just how good the bounds can be because as the exponential parameter
a approaches one the trial function approaches the true ground-state wave function.

Figure 1 shows the lower bounds L (solid curve) to Aψ (solid line) plotted against
the parameter b of bounded operator B. The bounds L are given by inequality (12)
using the true wave function as the trial function, thus condition (i) is satisfied. As b
approaches infinity, B approaches A and condition (ii) is met as well and Fig. 1 shows
the bounds L approaching Aψ asymptotically.

Figure 2 shows the lower bounds L (solid curve) to Aψ (solid line) plotted against
the parameter b of bounded operator B for two trial functions. The bounds L are given
by inequality (12). For comparison 〈B〉 (dashed curve) and 〈A〉 (dashed line) are also
shown. Because the trial functions are far from the true wave function, tight bounds
cannot be expected—condition (i) is not satisfied. As b rises, B becomes more like A
as shown by the dashed curve rising to the dashed line. Figure 2 shows that the lower
bounds initially increase because of this. However, this increase does not persist and
as b increases further (B become even more like A) the lower bounds fall. Even though
condition (ii) is met as b approaches infinity, the failure of φ to approach ψ , condition
(i), prevents tight bounds. Note that unlike variational energies, observables predicted
from variationally-determined trial functions can be too high (dashed line in Fig. 2a)
or too low (dashed line in Fig. 2b).

6 Helium atom

We now consider the helium atom which is the simplest chemical system that is not
exactly soluble in its electronic structure. In the limit of infinite nuclear mass (at the
origin) and using atomic units the Hamiltonian operator is given by Eq. (14) where
r12 is the distance between the two electrons.
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Fig. 2 Lower bounds L (solid curve) to Aψ (solid line) and approximate observables 〈B〉 (dashed curve)
and 〈A〉 (dashed line) are plotted against the parameter b of bounded operator B. a Exponential parameter
a = 0.9, b exponential parameter a = 1.1

H = −
(

1

2
∇2

1 + 2

r1

)
−

(
1

2
∇2

2 + 2

r2

)
+ 1

r12
(14)

The presence of the repulsive 1/r12 potential prevents separation of variables. With-
out such complication the eigenfunctions would be the products of He+ eigenfunctions
and the eigenvalues would be the sums of He+ eigenvalues, the lowest two energies
being −4 and −2.5. Because the operator 1/r12 is a positive perturbation, we can say
that E1 ≥ −4 and E2 ≥ −2.5. These poor lower bounds could be used directly in
the Eckart bound to s2, but the result is poor, so instead we use more precise lower
bounds. For E2 we chose the generous lower bound E2 ≥ −2.166 rounded from
Bazley’s work [2]. For E1 we used the Temple bound, inequality (15) with the E2
set at −2.166 and a variational trial function. The latter was very precise, determined
from a 945 dimensional matrix eigenvalue problem (see Appendix for details); this
gave an upper bound of 〈H〉 = −2.903 724 377. The Temple bound then provided
E1 ≥ −2.903 724 708. Precise knowledge of E1 is vital so that the Eckart bound (10)
can approach unity as the trial function φ approaches the true wave functionψ . Precise
knowledge of E2 is much less important.

E1 ≥ E2 〈H〉 − 〈
H2

〉

E2 − 〈H〉 (15)

In the previous section we simply used a cutoff value to keep B as a bounded and
lesser operator to A. Here we used a different method to construct B for powers of
the radial coordinate, r (really r1 or r2). For A = r , we chose B = r exp(−br) which
approaches A as b → 0; Bmax = (e · b)−1. For A = r2, we chose B = r2 exp(−br)
which approaches A as b → 0; Bmax = 2(e · b)−2. For A = r−1, we chose B =
r−1[1 − exp(−br)] which approaches A as b → ∞; Bmax = b.

The obvious choice B = r−2[1 − exp(−br)] as a lower bound to A = r−2 fails
because B is unbounded. A simple alternative is B = r−2[1 − exp(−br2)] which has
Bmax = b. However, because our computer program is based on exponentials rather
than Gaussian functions we did not pursue inverse square moments. Higher positive
moments are easily considered: for A = rn , n ≥ 1 we can let B = rnexp(−br)
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Fig. 3 Lower bounds to 〈r〉ψ(tr iangles), 〈r2〉ψ (squares), and 〈1/r〉ψ (circles) are plotted against the
base-10 logarithm of the parameter b appearing in B and Bmax . Data were obtained with a 180-term
variationally-determined trial function. Data points are connected for convenience

Table 1 Truncated expectation values and best lower bounds for 〈r〉ψ , 〈r2〉ψ , and 〈1/r〉ψ from Fig. 2.
Also shown are the Weinstein lower bounds using inequality (2a) with v = 1

Observable r r2 1/r

Expectation value 0.9294 1.1934 1.6883

Weinhold lower bounds 0.9289 1.1919 1.6866

Lower bounds (this work) 0.9120 1.1005 1.6680

which approaches A as b → 0; Bmax = n(e · b)−n . Powers of the separation between
electrons, r12, can be considered in a like manner.

Figure 3 plots lower bounds to the observables 〈r〉ψ , 〈r2〉ψ , and 〈r−1〉ψ . These were
obtained using a 180-term variationally-determined trial function in inequality (12).
Like the lower bounds in Fig. 2, the optimal results did not occur as parameter b
approached infinity; the optimal parameter was found through trial and error. The
lower bound to each observable was achieved at a different value for the parameter b.

Table 1 records expectation values from a variational trial function and our best
bounds using inequality (12) from Fig. 3. For each observable the closeness of the
two is poor. For comparison, bounds using Weinhold’s formula, inequality (2a), are
reported for v = 1. Increasing the accuracy of the trial function (using a larger basis
set) did not significantly improve the lower bounds. We believe the lack of improve-
ment with basis set size is due to our limited precision of E1 in the Eckart bound as
explained in the next section.

7 Analysis

Using the harmonic oscillator as an example, Fig. 1 shows that infinitesimally tight
lower bounds can result as B approaches A if the trial function happens to be the wave
function. While such a situation is rare indeed, the method would be quite limited if
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the lower bounds it predicted could not approach the true value in principle. The plots
in Fig. 2 use trial functions that deviate from the true wave function. Even though B
approaches A in these cases we find that the lower bound does not approach the true
value. Furthermore we find that best lower bound is not achieved when B is closest
to A. All examples with the harmonic oscillator utilized the exact ground and excited
state energies to give the best estimate of s2 using the Eckart bound.

The helium atom is a better test of our method because (1) the true wave function
is not so easily approached as no solution is yet known, and (2) exact energies are not
available. As predicted, and illustrated with the harmonic oscillator example, good
results can be achieved only when both φ ≈ ψ and B ≈ A, i.e. both conditions
(i) and (ii) are met. For the data in Fig. 3, the Eckart inequality ensured the square
overlap between the trial function and wave function to be at least 0.999 999 513. By
adjusting the parameter b in the bounded operator B we were able to make B as close
as desired to A. Despite the appearance of meeting both of conditions (i) and (ii), the
resulting observable bounds were quite poor. To better see the problems in our method
we rewrite inequality (12) slightly as inequality (16).

Aψ ≥ Bψ ≥ L = 〈B〉 − (1 − s2) 〈B〉 − 2(1 − s2)1/2 〈B〉1/2 B1/2
max (16)

To obtain a tight bound it must be that the terms subtracted from 〈B〉 in inequal-
ity (16) are small. Of these two terms the second, T2, is likely much larger than the first,
T1, for two reasons. The first is that the square root, rather than first power, of (1 − s2)

appears. Because this is a fractional value, the square root magnifies the value. The
second reason is that Bmax is likely a poor bound to 〈δ|Bδ〉. Data for the inverse radial
coordinate with b = 100 support this difference with T1 = 8 × 10−7 and T2 = 0.02.
Subtraction of T1 is an insignificant adjustment to 〈B〉 = 1.686 in inequality (16), but
the subtraction of T2 is a major adjustment.

As noted in the previous section there was little improvement for the helium atom
observable bounds as the basis set size increased beyond 180 basis functions. The
reason lies in the Eckart bound which estimates s2 using a ratio of E2,low − 〈H〉 to
E2,low−E1,low where lower bounds replace the unknown E2 and E1 in inequality (10).
Only to calculate the lower bound to E1, using the Temple formula, did we use a very
large basis set, 975 functions. To bound the observables we used a much smaller 180-
term basis set. As this basis set was enlarged any improvement in the bound to s2 was
limited to (E2,low − E1)/(E2,low − E1,low) rather than unity as 〈H〉 approaches E1.
Because 〈H〉 was already quite close to E1, more so than was E1,low, the improvement
was negligible. Thus the lower bound estimate of E1 proved more important than the
basis functions used to calculate the observables.

8 Conclusion

We have introduced a new method to bound observables for a quantum mechanical
system. Like other methods there is reliance on the energy eigenvalue problem; in this
case we need a lower bound to the ground-state and first excited-state energies which
are used to bound the magnitude of the overlap of a trial function with the true wave
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function. The main advantage of our method is that the required expectation values
are kept simple; those that are required are comparable in computational difficulty to
the expectation value being bounded. The method of Mazziotti and Parr [1] typically
requires the use of square operators (via the Temple method) or inverse operators (via
Bazley’s special choice). The methods of Bazley, Fox, Jennings, Wilson, and Weinhold
[4–6] require two operators, usually the one of interest and its square. In some cases,
the expectation value of square operator may not exist. Like the method of Mazziotti
and Parr [1], and also a relatively new approach by Marmorino and Cassella [8], the
proposed method has a parameter that can be optimized. Unfortunately the optimal
value cannot easily be predetermined.

Our method has the potential to perform well as illustrated by the harmonic oscilla-
tor example. However, the more practical test with the helium atom showed that it was
severely limited by imprecision of the ground state energy E1 and the likely great dif-
ference between Bmax (approaching infinity) and the unknown value of 〈δ|Bδ〉. Both
of these issues were evident in the second subtracted term of inequality (16) and kept
the lower bounds distant from the expectation values in Table 1. Using the maximum
value of operator B to bound 〈δ|Bδ〉 is very simplistic and other methods mentioned
in this work use more sophisticated theory to develop their bounds.

There has long been interest in spherically-confined atoms [10] and more recently,
shell-confined atoms [11]. In the former case all positive moments are bounded and
in the latter case both negative and positive moments are bounded. For such systems
both lower and upper bounds to moments could be determined using inequality (11).
Furthermore for thin shell systems, the bounding of 〈δ|Bδ〉 by Bmax would be very
reasonable and thus accurate bounds likely possible with our formalism.

Appendix

To approximate the ground-state wave function, variational calculations were per-
formed using a non-orthonormal basis set of the following spatially symmetric func-
tions suitable to describe singlet states.

χx,y,z = e−a(r1+r2)r z
12(r

x
1 r y

2 + r y
1 r x

2 ) (17)

The exponential parameter a was set at 1.875 for all calculations while integer
parameters x , y, and z were allowed to vary. To determine the lower bound to E1, x
and y ranged from 0 to 13 while z ranged from 0 to 8. This created a basis set of 975
functions. Lower bounds to 〈r〉ψ , 〈r2〉ψ , and 〈r−1〉ψ were determined using a smaller
basis set (180 basis functions) for the sake of time because many integrals needed to
be recalculated as the exponential parameter b in the lesser observable B varied. A few
observable lower bounds were calculated with more basis functions, but improvement
was slight; this is thought to be due to the constant approximation of E1 set by the 975
basis set calculation. All calculations were performed using Mathematica 6.0 [12].
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